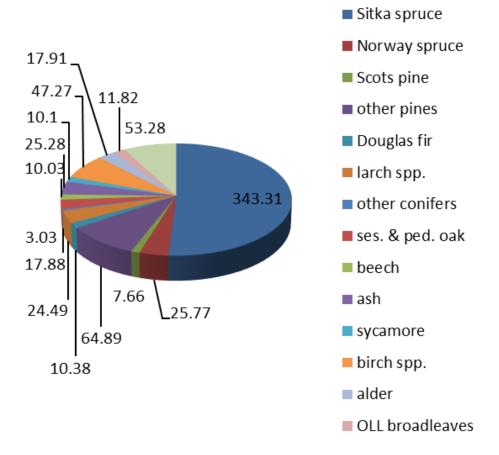
The Future of Sitka spruce

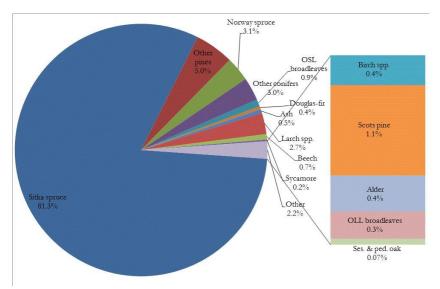
Present	ation · January 2019		
CITATIONS	5	READS	
0		183	
1 autho	ri.		
100	Niall Farrelly		
	TEAGASC - The Agriculture and Food Development Authority		
	59 PUBLICATIONS 536 CITATIONS		
	SEE PROFILE		
Some of	f the authors of this publication are also working on these related p	rojects:	
Project	ShortFor View project		
Project	Minor Conifers in Ireland View project		

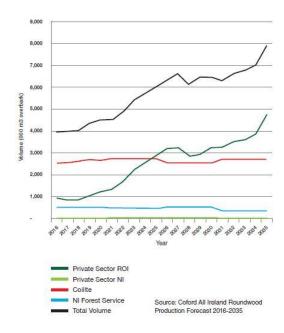
Background


- Early State expansion in forestry in 1920s was limited to sub-marginal and marginal agricultural land.
- Sitka spruce highly adaptable species which grows well on a range of soil/site types, tolerant of wind exposure, salt spray and wet soils growing successfully at elevations up to 550 m.
- Has a <u>central straight clean stem</u> capable of producing roundwood with good strength to weight properties producing structural timber (I.S. EN 14081-1)
- Better quality land afforested more recently since 1980's; very high production recorded. Height growth can be 20 to 25 m in 30 years with yield classes in excess of 24 m³ ha⁻¹ yr⁻¹ frequently recorded
- State afforestation schemes use baseline of yield class 14 for Sitka spruce as basis for grant aid.

Sitka spruce – % gain/loss compared to other conifers on a range of sites

Soil Type	Acid	Brown	Grey	Shallow	Rendzina	Podzol	Peaty	Lithosols	Gley	Peaty	Blanket	Basin
	Brown	Podzolic	Brown	Brown	/Rock		Podzol	/Rock		Gley	Peat	Peat
	Earth		Podzolic	Earth								
NF	91%	78%	74%	77%	109%	82%	77%	91%	73%	63%	80%	66%
GF	116%	96%	100%	94%	90%	133%	115%	115%	103%	91%	106%	99%
SF	76%	69%	64%	83%	0%	70%	69%	65%	87%	0%	0%	108%
LC	60%	62%	55%	62%	57%	68%	56%	69%	65%	55%	61%	57%
MC	109%	130%	0%	0%	0%	0%	0%	74%	0%	0%	0%	72%
JL	50%	50%	56%	50%	58%	58%	60%	57%	56%	56%	62%	67%
HL	64%	62%	59%	65%	0%	64%	65%	61%	60%	62%	73%	56%
EL	39%	39%	40%	36%	43%	43%	44%	36%	41%	39%	51%	41%
NS	88%	87%	85%	85%	88%	86%	93%	90%	91%	87%	99%	90%
LP	53%	46%	48%	57%	53%	46%	47%	50%	47%	44%	52%	54%
SP	53%	52%	52%	47%	50%	53%	54%	54%	52%	48%	60%	58%
СР	51%	56%	62%	41%	42%	55%	59%	65%	56%	0%	49%	57%
MP	74%	84%	78%	67%	77%	88%	84%	96%	76%	0%	86%	103%
DF	83%	82%	76%	68%	68%	81%	94%	76%	80%	70%	91%	82%
WH	98%	93%	73%	68%	89%	91%	99%	79%	90%	98%	97%	90%
WRC	107%	90%	74%	78%	0%	124%	90%	71%	78%	0%	86%	77%
SS	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%


Ireland – 770,000 ha in 2017; Sitka spruce 51%



National Fell volume (82%) Sitka spruce - Roundwood supply increasing

Source: Ireland's National Forest Inventory 2017 – Main Findings

All Ireland roundwood forecast (Phillips et al. 2016)

- ➤ Majority of roundwood harvested from Irish Forests is SS (2.63 M m³)
- ▶83% of forest products are exported to the UK preference for white deal
- Forest products valued at 423 million
- Forest industry is making a €2.3 billion contribution SS (1.86 billion) to the national economy

Threats to Existing Forest Resource

- Drought-induced damage/ yield restriction.
- Existing pest and disease issues
- Introduction of a novel insect pest.
- Mutation/ arrival of a fungal pathogen.

Phytophthora ramorum

Dothistroma septosporum

Phytophthora lateralis

Dendroctonus rufipennis

Forest Resource - threats of P. Ramorum, P. lateralis and Dothostroma.

Genus/Species	Species	Private (ha)	State (ha)	Total (ha)	%
Abies	Noble fir	108	1,229	1,336	0.2%
	Grand fir	11	277	289	0.1%
	Silver fir	1	59	60	0.0%
Chamaecyparis lawsoniana	Lawson cypress	356	120	476	0.1%
Cupressus macrocarpa	Monterrey cypress	47	8	55	0.0%
Larix	Japanese larch	14,268	13,591	27,859	4.9%
	Hybrid larch	1,607	1,145	2,752	0.5%
	European larch	881	565	1,446	0.3%

144,018

16,758

14,018

3,892

1,376

114

103

32,830

230,592

72

17

116

243,477

13,785

45,868

4,499

490

241

573

535

1,187

335,663

8,014

Sitka spruce

Norway spruce

Serbian spruce

Lodgepole pine

Scots pine

Douglas fir

Corsican pine

Monterrey Pine

western red cedar

western hemlock

Larch/Pine/Spruce

Picea

Pinus

Total

Pseudotsuga menziesii

Tsuga heterophylla

Thuja plicata

68.4%

5.4%

0.0%

0.11

1.5%

0.1%

0.0%

1.7%

0.1%

0.1%

6.0%

100.0%

387,495

30,543

59,886

8,390

563

258

687

637

34,017

566,255

9,390

116

Species Threat Matrix*–

Species	Biotic- Risk*	Primary and (secondary) biotic agents	Drought tolerance
CP	Medium	Dothistroma septosporum, (Heterobasidion annosum)	High
DF	Low	Phaeocryptopus gaeumannii (Adelges cooleyi)	High
EL (High	Phytophthora ramorum*, (Phytophthora pseudosyringae)	Somewhat
GF	Low	Heterobasidion annosum, (Adelges piceae)	Less to somewhat
HL (High	Phytophthora ramorum*, (Phytophthora pseudosyringae)	Less
JL (High	Phytophthora ramorum*, (Phytophthora pseudosyringae)	Less
LC (High	Phytophthora lateralis*, (Phytophthora cinnamomi)	Less
LP	Medium	Dothistroma septosporum, (Heterobasidion annosum)	High
MC	Low	Coryneum cardinale, (Cinara cupressivora)	Somewhat
MP	Medium	Dothistroma septosporum, (Cyclaneusma minus)	High
NF	Low	Heterobasidion annosum, (Phytophthora ramorum)**	Less
NS	Low	Heterobasidion annosum, (Elatobium abietinum)	Less to Somewhat
SERBS	Low	Elatobium abietinum	Somewhat
SF	Low	Heterobasidion annosum, (Adelges piceae)	Less
SP	Medium	Dothistroma septosporum, (Heterobasidion annosum)	High
SS	Low	Heterobasidion annosum, (Elatobium abietinum), Hylobious abietinum	Less
WH	Low	Heterobasidion annosum	Somewhat to High
WRC	Low	Heterobasidion annosum, (Cinara cupressivora)	Less to Somewhat

*From R Walsh, PhD

SS currently low threat for biotic – drought less a problem of

Future –Resilience strategies for Sitka spruce (some examples)

- First step Right tree in the Right place
- Avoid putting the species out of it's comfort range on nutrient deficient, water deficient, heaths, water saturated or frost prone sites, etc.
- Choose alternative species Douglas fir, Scots pine western hemlock, Norway spruce, which are more suited to certain sites
- Windblow consider windblow mitigation strategies early in management cycle- precommercial thinning/repspacing or wider spacing at planting and avoid brown edges.
- Management to maintain maximum productivity/vigour throughout rotation in the face of biotic challenges the role of shorter rotations, etc.
- Increase monitoring and aggressive removal of underperforming stands remove breeding grounds or bark beetles cleanup of windblow
- ➤ Mixtures nursing mixtures with SS, or mixtures for diversification structural diversity
- Consider tree breeding strategies linked to climate and biotic resiliance (GENESIS, etc.)

<u>Diversification – Sitka spruce in conifer mixtures</u>

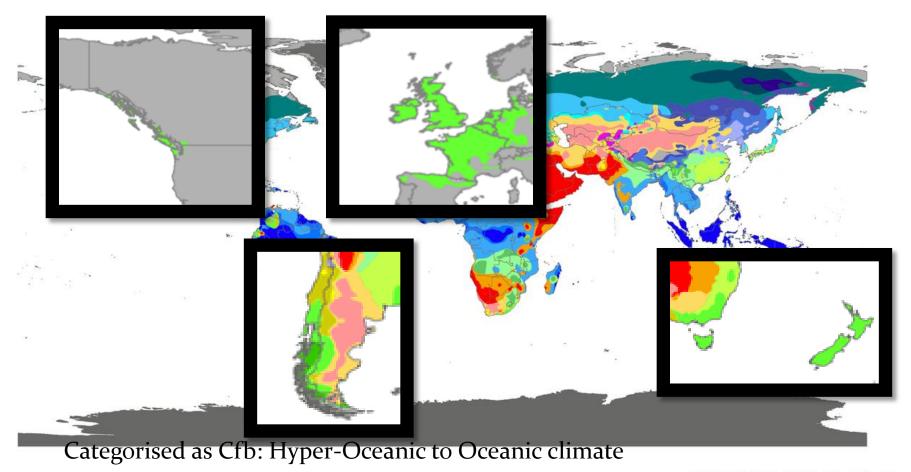
Genus/Species	Species	Pure (ha)	Mixture (ha)	Common mixture
Abies	Noble fir	475	861	SS,LPSC,JL
	Grand fir	49	239	SS,NS,DF
	Silver fir	8	52	SS,SP,JL
Chamaecyparis lawsoniana	Lawson cypress	46	429	JL,EL,WH
Cupressus macrocarpa	Monterrey cypress	4	51	LC,JL,WH
Larix	Japanese larch	7.386	20.473	SS.LPSC.LPNC
	Hybrid larch	662	2,090	SS,JL,SP
	European larch	261	1,185	SP,SS,JL
Picea	Sitka spruce	165,992	221,503	JL,LPSC,LPNC
	Norway spruce	8,363	22,180	SS,JL,SP
	Serbian spruce	5	110	JL,SS,NS
Pinus	Lodgepole pine	31,570	28,317	SS,NS,DF,JL,SP
	Scots pine	2,621	5,769	JL,NS,SS
	Corsican pine	210	353	SS,JL,SP
	Monterrey Pine	78	180	SS,JL,LPSC
Pseudotsuga menziesii	Douglas fir	2,756	6,634	SS,JL,NS
Thuja plicata	western red cedar	173	514	SS,JL,NS
Tsuga heterophylla	western hemlock	157	480	SS,DF,JL
	Larch/Pine/Spruce	33,382	635	SS,LPSC,JL
Total		254.199	312.057	

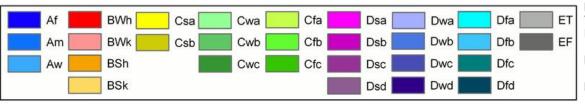
SS in compatible mixtures – need prior knowledge about performance of companion species in mixture on various site types

NS/ SS mixtures on mod. fertile sites

WH/SS mixtures (mimic natural range)

SS/GF mixtures (most fertile sites – over yielding)


(Photos: Scott McG Wilson)



Benefits over monocultures – Questions about timber quality? On poorer sites in Nursing effect, better sites indervielding

Future climate – review current provenances selection

World map of Köppen-Geiger climate classification

DATA SOURCE: GHCN v2.0 station data

Temperature (N = 4,844) and Precipitation (N = 12,396)

PERIOD OF RECORD : All available

MIN LENGTH : ≥30 for each month.

RESOLUTION: 0.1 degree lat/long

EVELOPMENT AUTHORITY

Choose SS provenances from warmer regions – assisted migration

Cs - DRY SUMMER

Subtypes

Csa - Hot

Csb - Warm

Cf -WITHOUT DRY SEASON

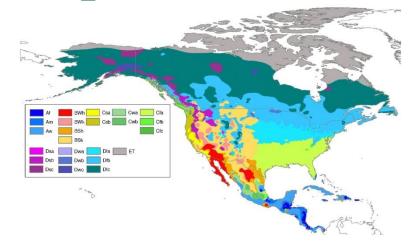
Subtypes:

Cfa - humid subtropical (Hot Summer),

southeastern USA

Cfb – marine (Warm Summer), Ireland

Cfc – cold summer


Therefore species/provenances from


Cfa, Cfb

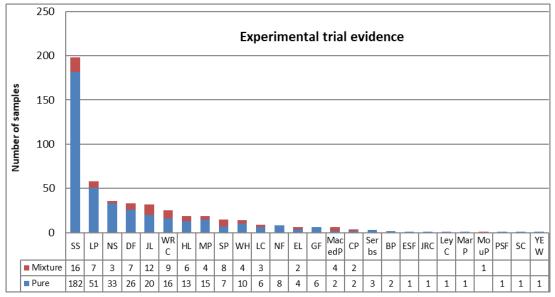
and possibly increased warmth

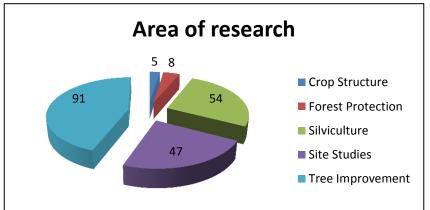
CSa, CSb are likely to prove suitable in

Sitka spruce - Future of Tree Breeding

- Get more for less Limited land produce more sustainably close the supply demand gap:
- ➤ The selection of faster growing trees with desirable traits has the potential to increase productivity and increase the output of sawn timber for the forestry sector in Ireland. (Co2 benefits in storage and HWP)
- However it is a long term process taking many years to test and produce improved material.
- Genomic selection offers potential to speed thing up
- New resilience traits should be incorporated into breeding populations
- Timber quality structural timber value added

GENESIS - Genomic evaluation for the sustainable Improvement of Sitka spruce


- ➤ A new research programme called GENESIS Genomic evaluation for the sustainable Improvement of Sitka spruce"
- Coordinated by Teagasc including UCD, Trinity, NBG, NUI-Galway, Coillte.


Proposes to:

- (i) develop and evaluate a genomics platform to accelerate, improve decision making, and increase efficiencies in the Irish tree breeding programme, and
- (ii) generate important phenotypes for traits not previously evaluated in the Irish tree breeding programme.
- Determine the genetic diversity of breeding population.
- > Expand the range of phenotype data (tree form, wood quality, and acoustic properties) and combine it with the genotype data to assist cross selection
- Evaluate whether resilience traits are evident in Sitka spruce and can be included into the breeding programme (e.g. climate change and biotic risk aphid, pine weevil. etc.)

Finally: future choices need to be informed by <u>sound scientific</u> <u>evidence</u>:

Evaluate state of play – and identify information gaps to address future challenges.

Source: Natforex database

Thank you for your attention

niall.farrelly@teagasc.ie

